ISSN 1671-1092 CN 33-1260/TK

大坝与安全 ›› 2025 ›› Issue (3): 52-.

• 检测技术 • 上一篇    下一篇

基于YOLOv5模型的混凝土大坝裂缝检测方法研究

黄  涛1,柯丰恺2,3,4,王  成2,3,4,彭海剑5 ,熊  爽5,段锦章5,杨  俊5,钟  良2,3,4
  

  1. 1.恩施清江大龙潭水电开发有限公司,湖北 恩施,445000;2.长江空间信息技术工程有限公司(武汉),湖北 武汉,430010;3. 长江卫星遥感应用研究中心,湖北 武汉,430010;4. 湖北省水利信息感知与大数据工程技术研究中心,湖北 武汉,430010;5. 武汉思拓人力资源开发有限公司,湖北 武汉,430010
  • 收稿日期:2022-12-05 出版日期:2025-06-30 发布日期:2026-02-01
  • 作者简介:黄 涛(1976—),男,湖北建始人,高级工程师,从事水电工程建设和运营管理工作。
  • 基金资助:
    恩施清江大龙潭水电开发有限公司科技项目(HNKJ-HF307);长江勘察规划设计研究有限责任公司科技项目(CX2019Z37)

Study of crack detection method for concrete dams based on YOLOv5 model

HUANG Tao, KE Fengkai, WANG Cheng, PENG Haijian, XIONG Shuang, DUAN Jinzhang, YANG Jun and ZHONG Liang
  

  1. Enshi Qingjiang Dalongtan Hydropower Development Co., Ltd.
  • Received:2022-12-05 Online:2025-06-30 Published:2026-02-01

摘要:

混凝土大坝表面裂缝大多仍采用人工检测,不仅风险性高,而且效率低。随着信息化技术的进步,智能化检测混凝土大坝表面裂缝是发展方向。现有利用图像识别的算法难以很好解决大坝裂缝样本少、裂缝长宽比大和背景环境复杂等问题。针对上述问题,以开源数据库和YOLOv5模型为基础,采用了迁移学习、数据增强和分段标注等技术手段,最终实现了混凝土坝面的裂缝自动检测,mAP@0.5达到0.942,F1-score达到0.919。与传统算法相比,笔者提出的算法具有更好的泛化性、准确性和实时性。实验表明,该算法适当调整后,也可用于桥梁、市政道路等工程的混凝土裂缝检测,而且可利用无人机、照相机、车载相机或其他设备采集表面图像,采集方式较为广泛。

关键词:

Abstract:

Most surface cracks of concrete dams are still detected manually, which is risky and inefficient. With the development of information technology, intelligent detection of surface cracks of concrete dams is the further development direction. Problems such as few dam crack samples, large ratio of crack length and width as well as complex background environment are difficult to solve for the existing algorithms using image recognition. Aiming at the above-mentioned problems, based on the open source database and YOLOv5 model, technical means including transfer learning, data augmentation and segmentation annotation are adopted. As a result, automatic detection of surface cracks of concrete dams is realized, with mAP@0.5 reaching 0.942, and F1- score reaching 0.919. Compared with traditional algorithms, the algorithm proposed in this paper has better generalization, accuracy and real-time performance. The experiment shows that the algorithm can also be applied to the concrete crack detection for bridges, roads and other projects after proper adjustment. Moreover, the surface image can be collected by UAV, camera, vehicle mounted camera or other equipment, which allows more image acquisition methods.

Key words:

中图分类号: