|
[1] 黄朝君,杨小云,夏杰. 丹江口初期工程大坝上游面水上裂缝检查与处理[J].人民长江,2015,46(6):45-48,74.
[2] 钮新强. 大坝安全诊断与加固技术[J]. 水利学报,2007(S1):60-64.
[3] 马嘉文.基于图像处理的大坝裂缝检测算法研究[D].哈尔滨:哈尔滨工程大学,2019.
[4] 梅智. 基于无人机图像的混凝土坝表观裂缝监测研究[D].大连:大连理工大学,2020.
[5] 肖锋. 基于数字图像处理技术的建筑裂缝监测研究[D].重庆:重庆大学,2013.
[6] 尹兰.基于数字图像处理技术的混凝土表面裂缝特征测量和分析[D].南京:东南大学,2006.
[7] 王丽.混凝土坝裂缝识别的数字图像处理算法研究[D].大连:大连理工大学,2019.
[8] 徐威,唐振民,吕建勇.基于图像显著性的路面裂缝检测[J].中国图象图形学报,2013,18(1):69-77.
[9] Yamaguchi T,Hashimoto S.Fast crack detection method for large-size concrete surface images using percolation-based image processing[J].Machine Vision and Applications,2010,21(5):797-809.
[10] Javidi B,Stephens J,Kishk S,et al.Pilot for automated detection and classification of road surface degradation features, Project Report No. JHR 03- 293[R].Connecticut Transportation Institute,2003:1-40.
[11] Carlotto M J.Enhancement of low-contrast curvilinear features in imagery[J].IEEE Transactions on Image Processing,2007,16(1):221-228.
[12] 陈飞飞,张宇峰,韩晓健.基于图像特征值的混凝土桥梁表面病害图像分类[J].结构工程师,2018,34(1):59-63.
[13] Yang L,Bing L,Wei L,et al.Deep concrete inspection using unmanned aerial vehicle towards CSSC database[C].Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems,2017:24-28.
[14] 韩晓健,赵志成,沈泽江.卷积神经网络在桥梁结构表面病害检测中的应用研究[J]. 结构工程师,2019,35(2):106-111.
[15] Kim I H,Jeon H M,Baek S C,et al.Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle[J].Sensors (Basel, Switzerland),2018,18(6):1881.
[16] Li R X,Yuan Y C,Zhang W, et al.Unified Vision Based Methodology for Simultaneous Concrete Defect Detection and Geolocalization[J].Computer- aided Civil and Infrastructure Engineering,2018,33(7):527-544.
[17] Cha Y J,Choi W R,Suh G H,et al.Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types[J].Computer-Aided Civil and Infrastructure Engineering,2018,33(9):731-747.
[18] Xu Y,Wei S Y,Bao Y Q,et al.Automatic seismic damage identification of reinforced concrete columns from images by a region- based deep convolutional neural network[J].Structural Control and Health Monitoring,2019,26(3):e2313.1-e2313.22.
[19] Maeda H,Sekimoto Y,Seto T,et al.Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images[J].Computer- Aided Civil and Infrastructure Engineering,2018,33(12):1127-1141.
[20] Zhang C B,Chang C C,Jamshidi M.Concrete bridge surface damage detection using a single- stage detector[J].Computer-Aided Civil and Infrastructure Engineering,2020,35(4):389-409.
[21] 张聪,曹明莉,许玲.混凝土多尺度特征与多尺度纤维增强理论研究进展[J].混凝土与水泥制品,2014(3):44-48.
[22] 施金汝,许凌峰,陈金立,等.基于树莓派和YOLOv5算法的路面裂缝检测系统[J]. 信息技术,2022,46(4):22-28,34.
|