ISSN 1671-1092 CN 33-1260/TK

大坝与安全 ›› 2025 ›› Issue (5): 67-.

• 资料分析 • 上一篇    下一篇

基于卷积和深度学习的混凝土面板堆石坝变形预测模型研究

董宸中
  

  1. 上海市政工程设计研究总院集团第六设计院有限公司,安徽 合肥,230000
  • 收稿日期:2024-05-10 出版日期:2025-10-30 发布日期:2026-01-31
  • 作者简介:董宸中(1992—),男,安徽蚌埠人,工程师,主要从事水工结构方面工作。

Study of deformation prediction model for concrete face rockfill dam based on convolution and deep learning

DONG Chenzhong
  

  1. Sixth Design Institute Co., Ltd., Shanghai Municipal Engineering Design Institute Group
  • Received:2024-05-10 Online:2025-10-30 Published:2026-01-31

摘要:

针对混凝土面板堆石坝变形预测中存在的模型泛化能力弱、数据获取难等问题,提出融合卷积与深度学习技术的CNN-LSTM模型。通过整合CNN与LSTM的优势,构建了混合预测模型,并结合工程实例探讨其在坝体变形预测中的应用效果。为验证该模型的优越性,同时建立了LSTM模型和CNN模型作为对照。对比结果显示,CNN-LSTM模型在预测精度上优于其他两种模型。研究表明,该方法可为大坝变形监测提供有效手段。

关键词:

Abstract:

Aiming at the problems of weak model generalization ability and difficult data acquisition in deformation prediction of concrete face rockfill dams, CNN-LSTM model that integrates convolution and deep learning techniques is proposed. Integrating the advantages of CNN and LSTM, a hybrid prediction model is constructed, and its application effect in dam deformation prediction is explored. To verify the superiority of the model, LSTM and CNN models are also established. The comparison results show that the CNN-LSTM model outperforms the other two models in terms of prediction accuracy, that this method can provide an effective means for dam deformation monitoring.

Key words:

中图分类号: