[1] 王玉洁,周建波,董永.水电站大坝安全监测资料分析现状及展望[J].大坝与安全,2015(5):50-57.
[2] 苏怀智,曹其光.大坝服役性态原型监测数据序列的频谱分析[J].长江科学院院报,2012,29(9):34-38.
[3] D. Tonini.Observed behavior of several Italian arch dams[J].Journal of the Power Division,1956,82(6):1-26.
[4] 吴中如.混凝土坝安全监控的确定性模型及混合模型[J].水利学报,1989(5):64-70.
[5] S. Albawi,T. Mohammed,S. Al- Zawi.Understanding of a convolutional neural network[C].2017 International Conference on Engineering and Technology (ICET),2017:1-6.
[6] 吴茂贵,王冬,李涛,等.Python深度学习:基于Tensorflow[M].北京:机械工业出版社,2018.
[7] Zhao B D,Lu H Z,Chen S F,et al.Convulutional neural networks for time series classification[J].Journal of Systems Engineering and Electrics,2017,28(1):162-169.
[8] Yang J B,Nguyen M N,San P P,et al.Deep convolutional neural networks on multichannel time series for human activity recognition[C].Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI),2015:25-31.
[9] K. Kashiparekh,J. Narwariya,P. Malhotra,et al.ConvTimeNet: A pre- trained deep convolutional neural network for time series classification[C].2019 International JointConference on Neural Networks (IJCNN),2019:1-8.
[10] F. Sultana,A. Sufian,P. Dutta.Advancements in image classification using convolutional neural network[C].2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN),2018:122-129.
[11] Y. Lecun,L. Bottou,Y. Bengio,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[12] K. Simonyan,A. Zisserman.Very deep convolutional networks for large- scale image recognition[J].arXiv:1409.1556,2014.
[13] S. Khirirat,H. R. Feyzmahdavian,M. Johansson.Mini-batch gradient descent: Faster convergence under data sparsity[C].2017 IEEE 56th Annual Conference on Decision and Control (CDC),2017:2880-2887.
|