ISSN 1671-1092 CN 33-1260/TK

大坝与安全 ›› 2025 ›› Issue (6): 47-.

• 设计研究 • 上一篇    下一篇

基于 EMD-LSTM 的土石坝渗流预测研究

马 啸   

  1. 黄河勘测规划设计研究院有限公司,河南 郑州,450003
  • 出版日期:2025-12-20 发布日期:2026-02-05
  • 基金资助:
    国家重点研发计划项目(2024YFC3210700)

Study on seepage prediction of earth rock dams based on EMD-LSTM model

by MA Xiao   

  1. Yel⁃ low River Engineering Consulting Co., Ltd.
  • Online:2025-12-20 Published:2026-02-05

摘要: 为提高土石坝渗流预测的精度和效率,提出了一种基于经验模态分解(EMD)和长短期记忆神经网络(LSTM)的土石坝渗流预测模型。针对获取的土石坝渗流监测时间序列数据,采用EMD 方法对其进行自适应分解,获得若干从高频到低频的模态分量(IMF),对模态分量建立LSTM 土石坝渗流预测模型,将各模态分量的预测结果相加得到土石坝渗流最终预测值。为验证该土石坝渗流预测模型的精度,对实例土石坝渗流数据进行分析,并与其他预测模型进行对比试验,结果表明,基于EMD-LSTM 的土石坝渗流预测模型具有良好的精度,适用于运行期土石坝渗流预测分析,其结果可为土石坝安全运行提供决策技术支持。

关键词: 经验模态分解, 长短期记忆神经网络, 渗流, 大坝安全监测

Abstract: To improve the accuracy and efficiency of seepage prediction for earth rock dams, a seepage prediction model based on Empirical Mode Decomposition and Long Short Term Memory is proposed in this paper. Regarding the obtained seepage monitoring time series data of earth rock dam, the EMD method is used to adaptively decompose them and obtain a number of intrinsic mode functions from high frequency to low frequency. The LSTM earth rock dam seepage prediction model is established for intrin ⁃ sic mode functions, and the sum of prediction results of each intrinsic mode function is the final predic ⁃ tion value of the earth rock dam seepage. To verify the accuracy of this earth rock dam seepage predic ⁃ tion model, the seepage data of an earth rock dam is analyzed and compared with other prediction mod ⁃ els through experiments. The results show that the seepage prediction model of earth rock dams based on EMD- LSTM has good accuracy and is applicable to the prediction and analysis of earth rock dam seepage during operation. The results can provide technical support for the decision-making of safe op ⁃ eration of earth rock dams.

Key words: Empirical Mode Decomposition, Long Short Term Memory, seepage, dam safety monitoring