[1] 禹建丽,卞帅.基于BP神经网络的变压器故障诊断模型[J].系统仿真学报,2014,26(6):1343-1349.
[2] Bustamante S,Manana M,Arroyo A,et al.Dissolved gas analysis equipment for online monitoring of transformer oil: A review[J].Sensors,2019,19(19):4057.
[3] 龚瑞昆,李昊.主元分析优化量子神经网络的变压器故障诊断[J].现代电子技术,2019,42(17):119-123,128.
[4] 田凤兰,张恩泽,潘思蓉,等.基于特征量优选与ICA-SVM的变压器故障诊断模型[J].电力系统保护与控制,2019,47(17):163-170.
[5] 公茂法,张言攀,柳岩妮,等.基于BP网络算法优化模糊Petri网的电力变压器故障诊断[J].电力系统保护与控制,2015,43(3):113-117.
[6] 贾京龙,余涛,吴子杰,等.基于卷积神经网络的变压器故障诊断方法[J].电测与仪表,2017,54(13):62-67.
[7] 石鑫,朱永利.深度学习神经网络在电力变压器故障诊断中的应用[J].电力建设,2015,36(12):116-122.
[8] 张玉振,吉兴全,彭立岩,等.基于栈式自编码器和Softmax分类器的电力变压器故障诊断[J].中国科技论文,2018,13(23):2694-2699.
[9] 石鑫.基于深度学习的变压器故障诊断技术研究[D].保定:华北电力大学,2016.
[10] Dai J J,Song H,Sheng G H,et al.Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network[J].IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(5):2828-2835.
[11] Li J L,Li X Y,He D,et al.A directed acyclic graph network combined with CNN and LSTM for remaining useful life prediction[J].IEEE Access,2019,7:75464-75475.
[12] Lu S X,Feng J,Zhang H G,et al.An estimation method of defect size from MFL image using visual transformation convolutional neural network[J].IEEE Transactions on Industrial Informatics,2019,15(1):213-224.
[13] Peng D D,Liu Z L,Wang H,et al.A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains[J].IEEE Access,2019,7: 10278-10293.
[14] Srivastava N,Hinton G,Krizhevsky A,et al.Dropout: A simple way to prevent neural networks from overfitting[J].Journal of Machine Learning Research,2014,15(1):1929-1958.
[15] Springenberg J T,Dosovitskiy A,Brox T,et al.Striving for simplicity: the all convolutional net[C].International Conference on Learning Representations,2015.
|